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Abstract

Despite the advancements in the computer industry in the past thirty

years, there is still one major deficiency. Computers are not designed to

handle terms where uncertainty is present. To deal with uncertainty,

techniques other than classical logic must be developed. This paper

examines the concepts of statistical analysis, the Dempster-Shafer

theory, rough set theory, and fuzzy set theory to solve this problem. The

fundamentals of these theories are combined to provide the possible

optimal solution. By incorporating principles from these theories, a

desicion-making process may be simulated by extracting two sets of

fuzzy rules: certain rules and possible rules. From these rules a

corresponding measure of how much we believe these rules is constructed.

From this, the idea of how much a fuzzy diagnosis is definable in terms of

its fuzzy attributes is studied.
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INTRODUCTION

Computers have progressed so much over the past thirty years that

it is now hard to imagine life without them. They have become smaller,

faster, and less expensive. Similarly, the applications we use them for

has grown exponentially. If the auto industry had done what the computer

industry has done in this time, a Rolls-Royce would cost a couple of

dollars and get a couple of million miles per gallon.

An important development of this progression is the computer's

ability to refine and expedite the decision-making process. One can enter

in raw data as input and receive the output in an organized, logical form.

This manipulated form may then be used to help facilitate some type of

decision by the user. It is also possible for a computer program to have a

built in "thinking m function which requires no help from the user in order

to formulate a decision. A decision may be automatically made by the

computer, solely on the output and any preset conditions of the output.

A program which can perform these simple functions is possible
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through knowledge acquisitions using examples. Through repetition, one

may learn to associate certain factors to form a decision. Ideally, the

decisions will always be the same if the corresponding factors are always

the same. For example, if a person sees lightning and hears thunder, they

may assume it is mining close by from some similar experiences in the

past. Again, this is under "ideal" circumstances; the person is positive

they see lightning and positive they hear thunder. Unfortunately, "ideal"

circumstances are not always present.

As amazing as the progression of computers has been, there is a

noticeable deficiency: computers are not designed to manipulate data

where uncertainty is present. Uncertainty may arise in many different

ways. It may be brought about by ambiguous terms used to describe a

certain situation. It may also be caused by scepticism of rules used to

describe a couse of action, or by missing or erroneous data. To handle

uncertainty, methods other than classical logic must be developed. One

possible solution to this is to use fuzzy set theory to extract rules.

In ordinary set theory, an element is either in or out of the set. In

fuzzy set theory, however, an approximation is used to determine the

degree to which an element is in the set. Thsi is due to the fact that

subjective terms are often used to describe a condition. Fuzzy set theory
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allows for a fraction of an element to be in the set. From these fuzzy

sets, one can extract two sets of fuzzy rules: certain rules and possible

rules. Basically, the certain rules are formed by taking the minimum of

the union of the fuzzy sets. Conversely, the possible rules are formed by

taking the maximum of the intersection of the fuzzy sets.

Another possible solution to deal with uncertainty is in learning

from examples. An effective method to acquire knowledge through

examples is rough sets. Rough sets is the theory of endorsements and

non-functional logic. As in fuzzy set theory, possible and certain rules

are extracted. In rough sets, these rules are generated by qualities known

as the upper and lower approximations. These qualities are similar to the

inner and outer reductions of Dempster-Shafer theory. The attributes of

the conditions are assigned values and a measure of how much these

attributes determine the diagnosis is established. However, the values of

these attributes require some judgement for their determination.

Similary, the diagnosis is often not of "pure n type, but a combination

which is reflective of fuzzy sets.

Combining these two methods of fuzzy set and rough set theories, as

well as the principles of Dempster-Shafer theory, provides a possible

optimal solution for dealing with uncertainty. By integrating these two
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methods, we can produce a set of certain rules and possible rules and

determine a measure of belief associated with these rules. These rules

allow a basis of dealing with uncertainty in the decision-making process.
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Uncertainty

!.1

and "crunched" them up to come to a certain decision.

that arises is, "How does one deal with uncertainty?'.

Uncertainty

The previously referenced computer program took certain variables

A major question

Uncertainty may

arise in many different situations. It may be caused by the ambiguity in

the terms used to describe a specific situation, or it may be caused by the

skepticism of rules used to describe a course of action. Uncertainty may

also be caused by inconsistencies in data, or simply by missing or

erroneous data.

To understand what is meant by ambiguity of terms, one must

realize that different people may associate different meanings or values

for the same term(s). To illustrate this, one cannot put a set value on

"very rich" or "moderately rich" because these are subjective terms. One

person's definition may be quite different from another's. For this reason,

descriptive terms may contain some degree of ambiguity, and therefore

some degree of uncertainty.
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Uncertainty caused by the skepticism of rules may be attributed to

an underlying doubt one may have regarding a situation. Occasionally, all

factors may point towards a certain decision, but one's "gut feeling"

produces a degree of doubt toward that decision. Whether these doubts

are warranted or not, they must be taken into account when we refer to

uncertainty. For these doubts may influence one's future decisions on

similar situations.

Clearly, any missing or erroneous data will lead to uncertainty.

Unfortunately, it is not always obvious when data is wrong. A strong

characteristic of erroneous data is inconsistencies. In other words, if the

same data has conflicting outcomes, there is uncertainty present. To

illustrate this, the table below represents how a decision-maker may

make an inconsistent decision based on a couple of pieces of data. In this

example, Case X2 and Case X5 have the same data, yet different decisions.

This shows that uncertainty exists somewhere in this decision-making

process.

gJIIltZ
X 1 0 0 A

X2 1 0 B

X3 0 1 B

X4 1 1 A

Xs I 0 A
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1.2 Techniques to Combat Uncertainty

1.2.1 Statistics

To deal with uncertainty, techniques other than classical logic need

to be developed. The most useful tool for handling probability is

statistics, or statistical analysis. Statistical analysis is concerned

with the collection, organization, and interpretation of data according to

well-defined procedures. Observations are made and converted into

numerical form. The numbers are manipulated and organized, with the

results interpreted and translated back into a way one may understand.

Statistical analysis allows for the reduction of data. Large masses

of unorganized numbers may be characterized into smaller sets that

describe the original observations without sacrificing critical

information. The second major role lies in its use as an inferential

measuring tool. In other words, it provides procedures for stating the

degree of confidence one may have in the accuracy of the measurements

one makes. Finally, statistical analysis allows one to make distinctions

about relationships that exist between and among sets of observations.

Does knowledge about one set of data allow us to infer or predict

characterisics about another set of data?

Stastistical analysis does, however, have some deficiencies. Data
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reduction may lead to the sacrificing of detail. The inferential measuring

tool statistical analysis provides is useful, but all measurements are

subject to error. Furthermore, sometimes one may strive to find a

connection between two sets so much that a connection is unjustifiably

made.

Though statistics is a useful method for handling probability, it

provides only a foundation for the problem of knowledge acquisition under

uncertainty. Three theories which are better suited to handle this

problem are: Dempster-Shafer Theory, fuzzy set theory, and rough set

theory.

1.2.2 Dempster-Shefer Theory

The Dempster-Shafer Theory is a theory of evidence and probable

reasoning. It is a theory of evidence because it deals with weights of

evidence and with numerical degrees of support based on evidence. It is a

theory of probable reasoning because it focuses on the combination of

evidence, more specifically, the combination of belief functions.

The theory begins with the idea of using a number between zero and

one to indicate the degree of belief one should assign for inclusion on the

basis of the evidence. Its focus lies in the combination of degrees of

belief based on one body of evidence with those based on an entirely
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distinct body of evidence. This combination of belief functions is the

heart of the Dempster-Shafer Theory. Given several belief functions

based on distinct bodies of evidence, this theory enables one to compute a

new belief function based on the combined evidence.

The main connection Dempster-Shafer has to the other theories is

the concepts of inner and outer reductions. As will be shown in the

discussion concerning rough sets (section 2.1), this concept is almost

identical to the lower and upper approximations of rough sets. In inner

reduction, denoted by 9_(A), is the largest subset that implies A.

L_)

reduction, denoted by _), is the smallest subset that is implied by A.

This theory is very similar to rough set theory.

1.2.3 Fuzzy Set Theory

Perhaps the most useful tool when dealing with uncertainty is fuzzy

set theory. This theory is the most practical where ambiguous terms are

present. To get a complete understanding of this theory, one must first

backtrack to ordinary set theory. All branches of mathematics are

developed, consciously or unconsciously, in set theory or some part of it.

It is, therefore, an important concept to grasp. A set is a collection of

things (called elements or members), the collection being regarded as a

single object. An item is either in the set or it is not. This property is

The outer
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referred to as inclusion.

In fuzzy set theory, however, an approximation is used to

determine the degree to which an element is in the set. Such concepts as

inclusion or set equality may seem too strict. Usually, _the structures

embedded in fuzzy set theories are less rich than the boolean lattice of

ordinary set theory. Unlike ordinary set theory, one cannot determine the

cardinality, or size, in fuzzy set theory. One cannot compute an accurate

union or intersection of two fuzzy sets because the elements are

estimates of inclusion, not "crisp" values.

If the value of a set is allowed to be the real interval [0,1], A is

called a fuzzy set. The grade of membership of an element, x, in A is

I_A(x). The closer the value of I_A(x) is to 1, the more x belongs to A.

Similarly, the lower the value ofp.^(x), the less x belongs to A. Clearly, A

is a subset of x that has no crisp boundary. By using fuzzy set theory, one

must approximate the value of inclusion an element has in a set.

Earlier the question was raised, "What is the difference between

'very rich' and 'moderately rich'?'. Fuzzy set theory could approximate a

person worth $X to be .4/very rich and .8/moderately rich. Because of the

ambiguity of the term "rich', one needs to approximate the value of the

person for "very rich" and "moderately rich'. It might be observed that, for
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the decision-maker assigning the values, the person falls into the

category of "moderately rich" more than "very rich'. For this reason, the

decision-maker puts more "weight" on the term "moderately rich'. The

person lies within the set of "moderately rich" more than the set of "very

rich'. Hence, they are assigned those corresponding values.

A problem one may encounter using this theory is the fact that the

decision-maker assigns these values. Obviously, not all people have the

same pre-conceived meanings for terms such as "very rich" or "extremely

tall*. The approximations one person gives may be completely different

from the approximations of someone else. For example, a small boy may

see a man 5'9" as "very" tall. Conversely, a professional basketball player

might see the same person as "average" height. It is best to keep this in

mind, because it can easily influence the decisions.

1.2.4 Rough Sets

As was stated earlier, the most traditional way of acquiring

knowledge is based on learning from examples. An another effective tool

of inferring knowledge from examples is rough sets. Rough sets is the

theory of endorsements and non-functional logic.

Let U be a non-empty set, call the universe, and let R be an

equivalence relation on U, called an indiscernibility relation. An ordered
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pair A =(U,R) is called an approximation space. For an element x of U, the

equivalence class of R containing x will be denoted by [X]R. Equivalence

classes of R are called elementary sets in A. We assume that the empty

set is also elementary. Any finite union of elementary sets in A is called

a definable set in A.

Two more concepts, known as the lower approximation and upper

approximation of X in A are examined later. Basically, the lower

approximation of X in A is the greatest definable set in A, contained in X.

The upper approximation of X in A is the least definable set in A

containing X. These concepts correspond to the inner and outer reductions

from Dempster-Shafer Theory, also examined later. A rough set in A is

the family of all subsets of U having the same lower and upper

approximations in A.

There are essential connections between rough set theory and

Dempster-Shafer theory. For example, the lower and upper approximations

of rough set theory exist under the names of inner and outer reductions,

respectively. Similary, the qualities of lower and upper approximations of

rough set theory are the beleif and plausibility functions, respectively, of

Dempster-Shafer theory.

The main difference between rough set theory and the Dempster-
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Shafer Theory is in the emphasis: Dempster-Shafer Theory uses belief

functions as a main tool, while rough set theory makes use of the family

of all sets with common lower and upper approximations. The main

advantage of rough set theory is that it does not need any preliminary or

additional information about data.

!.3 The Proposed Solution

The main purpose of this work is to study the setting described

before where a decision-maker is faced with uncertain (i.e. fuzzy)

conditions and makes a fuzzy decision which might be strongly or weakly

based on these symptoms. Here, the techniques or fuzzy set theory and

rough sets will be incorporated to attempt to provide the optimal solution

of measuring uncertainty. From the conditions and decisions, one will find

that fuzzy rules may be extracted. In fact, one may extract two sets of

rules: certain rules and possible rules. One may also determine a measure

of how much they believe in these rules.

The main body of this work is examined in detail in Section 2. The

basic notations and results necessary to fully understand these concepts

are discussed here. Section 3 offers a detailed example of these concepts

at work. It provides an everyday application, as well as an opportunity to
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see how these principles are incorportated. The software requirements

and design of this product, which simulates the basic ideas set forth here,

is available in Section 4. The coding of this program may be found in

Appendix A.
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Rough Set theory vs. Fuzzy Set theory

As stated in Section 1, I beleive the optimal solution for knowledge

acquisition under uncertainty lies within the combination of fuzzy set and

rough set theories. By integrating the fundamentals of these theories, I

hope to measure and, where possible, minimize the degree of uncertainty.

To best understand how the concepts of fuzzy sets and rough sets are to

be incorporated, it is important to first grasp the main principles of rough

sets.

2.1 Rough Sets - A Closer Examination

Let U be the universe, R an equivalence relation on U, and X any subset

of U. If [X] denotes the equivalence class of X relative to R, we can then

define the foundation of rough sets. This is called the upper and lower

approximations of X and is denoted, respectively, by:

R(X)=(X_ U/[X]cX) and

P,(x) I ( x _ u / [x] n x ,_o ).

Once again, rough sets are the family of all subsets in U having the same

16



upper and lower approximations.

To examine these upper and lower approximations closer, we define

an information system as the quadruple ( U, Q, V,"(') where Q = C u D and

C n D -- ®. The set C stands for the set of conditions, and D is the set of

decisions. We assume that C is equal to the set of attributes, Q. The set

V stands for value and t is a function from U x Q into V where t(u,q)

denotes the value of attribute q for element u. For example, the pulse rate

q of patient u. The set C produces an equivalence on U by partitioning U

into sets over which all attributes are constant. A rough set is classified

by properties of its lower and upper approximations. The set is called

roughly C-definable if"

R (X) = E_ and R (X) _ U.

The set is internally C-undefinable if:

R(X) -O and R (X)#U.

The set is externally C-undefinable if:

R (X) #: O and R (X) = U.

The set is totally C-undefinable if:

R (X) - E) and R (X) = U.

17



To illustrate this, the table previously referenced is examined again.

For this example, Decision 'A' denotes sickness. The conditions produce a

partition on {XI,X2,X3,X4,X5}, namely { {Xl,X5} , {X2,X3} , {)(4} }. The decision-

maker defines "sick" people by X = {X2,X4}. Thus, the lower and upper

EgbLEI/LIIb 
case IU]IEL

Xl 0 0 A

Xs 1 0 B

X3 0 1 B

)(4 1 1 A

)(5 1 0 A

approximations are R (X) = {X4} and R (X) = {X2,X3,X4}. In this example,

R(X) _ 0 and R(X)# U, therefore X is roughly C-definable. For an internally

C-undefinable set X in S we can not say with certainty that any x E U is a

member of X. For an externally C-undefinable set X in S we can not

exclude any x e U being possibly a member of X. This is similar to

Dempster-Shafer belief and plausibility functions of rough sets.

The difference between the lower and upper approximations may be

attributed to the presence of inconsistencies. If it were not for the

inconsistencies, the decision-maker's opinion would be in line with the

upper and lower approximations produced by C. It is this difference

18



between R(X) and R(X) that offers a measure of how well the diagnosis of

the decision-maker follows the conditions. If the decision-maker is an

"expert', the difference between the lower and upper approximations gives

one a measure of how good conditions C are to determine the diagnosis. In

other words, the more we trust the decision-maker, the more we beleive

how the conditions determine the diagnosis. Moreover, it is these lower

and upper approximations which generate the rules that will be used as

the basis for the decision-making process. These generated rules, called

the certain and possible rules, will be examined closer in Section 2.2.

Unfortunately, there may be uncertainty in the conditions, as well as

the diagnosis. The conditions and the diagnosis rarely partition the

universe into "crisp" sets. This is due to the fact that most of the values

of attributes are descriptive, and thus subjective terms. It is this that

leads to the "fuzziness" of the conditions/diagnosis when trying to define

the terms. This "fuzziness" can lead to overlapping, therefore rendering

crisp partitions nearly impossible. At best one hopes the terms can be

partitioned with as little overlapping as possible.

2.2 Fuzzy Sets - A Closer Examination

For all decision-making processes, it is the rules which guides one

19



towards a decision. Decision-making under uncertainty is no different.

The problem lies within determining these rules. As stated in Section 2.1,

the upper and lower approximations generate possible and certain rules.

It is Fuzzy Set theory which allows one to extract these rules.

2.2.1 Functions of Fuzzy Set Properties

To understand how these rules are extracted, one must first be

familiar with the notation.

function: p.^ : U

A fuzzy subset A of U is defined by the

..... > [o,1].

This simply states that the values of the fuzzy subset A fall between 0

and 1. If A and B are fuzzy subsets, the properties A n B, A u B, and -_A are

defined by the functions: Min{IIA(X),IIB(X)} , Max{/IA{x),/_s(X)} , and

1-_A(X), respectively. The property--, A u B corresponds to the function

Max{1-A(x), B(x)}. These computed values are the foundation for

extracting the rules. Therefore, it is very important to understand what

is meant by the notation.

The first function, Min{_A(x),l_B(X)}, is computed by matching up the

corresponding elements of the fuzzy subsets and taking the minimum (in

value) of the two. For example, given the two fuzzy subsets:

A = (.3, .4, .7, .8, .6, .1) and

B - (.6, .2, .4, .3, .5, .4)
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One can compute Min(A,B) = (.3, .2, .4, .3, .5, .1). The second function,

Max{l_A(X),l_s(X)}, is similar in computation to the first. Instead of taking

the minimum of the two, one takes the maximum, or greatest in value.

Using the two previous subsets of A and B, one can compute Max (A,B) =

(.6, .4, .7, .8, .6, .4). The third function, 1 I_A(X), is computed by taking

one(l) minus the values of the fuzzy subset. Again, using the previous

subset A, one can compute 1-A = (.7, .6, .3, .2, .4, .9). The last function,

Max{1-A(x), B(x)}, is simply a combination of the second and third

functions. First, one computes 1-A(x) then compares that to B(x), taking

the maximum of the two. For example,

Max{l-A, B} = Max{(.7, .6, .3, .2, .4, .9),(.6, .2, .4, .3, .5, .4)}

Max{l-A, B} = (.7, .6, .4, .3, .5, .9).

2.3 Establishing Certain and Possible Rules

Now that the fundamental properties (and corresponding notation)

have been explained, we can define two functions of major importance to

this work. These two functions are on pairs of fuzzy sets and allow us to

extract the rules. We assume here that A and B denote fuzzy subsets of

the same universe.

is included in B.

The function I(A c B) measures the degree to which A

This function computes the rules generated by certainty
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and is defined as:

I(A c B) = inf Max{1-A(x), B(x)}.
X

The function J(A#B) measures the degree to which A intersects B. This

function computes the rules generated by possibility and is defined by:

J(A#B) = max Min{A(x), B(x)}.
X

The function I(A c B) is computed by first finding Max{1-A(x), B(x)}, then

taking the minimum term. For the previous fuzzy subset examples of A

and B, we found the Max{l-A, B} = (.7, .6, .4, .3, .5, .9). Since the minimum

term is .3, I(A c B) = .3. The function J(A#B) is computed by first finding

Min{A(x), B(x)}, then taking the greatest (in value) term. Again, using A

and B we found Min{A,B} = (.3, .2, .4, .3, .5, .1). Since the maximum term is

.5, J(A#B) -.5.

For the example used in this work, we assume the decision-maker is

faced with different conditions, or attributes, and makes a decision based

on the values of these attributes. To provide a more concise explanation

of this work, we will limit the number of possible decisions to two (2).

Similarly, we will limit the description an attribute may have to two (2).

For example, size can only be measured as a degree of large and small.

These limitations are made to explain when to compute the I(A c B) and
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J(A#B) values.

For the functions of I(A c B) and J(A#B), A denotes the descriptions

of the attributes, while B denotes the possible decisions. For each

description, we must measure the degree to which it is included in

decision 'A' as well as in decision 'B'. In addition to this, we also measure

the degrees of intersections of the descriptions for each decision. For

example, if we have attribute-1 with descriptions of 'W' and 'X',

attribute-2 with descriptions of 'Y' and 'Z', and possible decisions of 'A'

and 'B', we would need to compute all of the following:

I(W c A) I(Y c A)

I(W c B) I(Y c B)

I(x c A) I(Z c A)
I(X c B) I(Z c B)

J(W#A) J(Y#A)

J(W#B) J(Y#B)

J(X#A) J(Z#A)

J(X#B) J(Z#B)

2.3.1 Threshold Values

I(W n Y c A)

I(W n Y c B)

I(X n Y c A)

I(X n Y c B)

J(W n Y#A)

J(W n Y#B)

J(X n Y#A)

J(X n Y#B)

As one can see, this leads to large numbers of rules. For this case,

we would have 24 rules: 12 certain rules and 12 possible rules. If we had

3 attributes with 2 descriptions each, the number of rules would increase

to 88 rules. It is therefore essential to establish a "threshold" value,

denoted by o_, for which we may ignore all rules falling below this value.
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Actually, we need two of these values: one for the certain rules and one

for the possible rules. The decision-maker may or may not set these two

equal. The higher we set the threshold, the higher the belief we have for

the rules which factor above it. Unfortunately, there is a trade-off, for

the higher the threshold, the more rules we ignore. Ideally, the solution to

this trade-off is to allow the decision-maker to interactively change the

threshold values as they see fit. By allowing this interactive changing, it

also provides somewhat of a sensitivity analysis. The decision-maker can

immediately see which rules are affected by the changing threshold value.

Another reason to promote interactive changing of the threshold is that

the value of c¢ is very much problem dependent. A value of _ - .5 might be

the best for one problem, but irrelevant for another. The decision-maker

may adjust the value till it is set at the most appropriate level.

2.3.2 Extracting Possible and Certain Rules

Once the threshold value has been established, it is time to extract

the rules. All rules (values of I and J) which fall below the threshold

value are immediately eliminated. To further eliminate rules, we have

certain provisions. First, all rules with unique I and J values are kept.

Second, if more than one rule has identical I values, we keep (extract) the

"smaller" in terms of attributes. For example, if we were to obtain the
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following certain rules:

If W then A is present .6
If W and Y then A is present .6
If W and Zthen A is present .6

(1)
(2)
(3)

we would keep rule (1) because rules (2) and (3) offer no significant data.

Conversely, if these three rules were computed using J values, thus

making them possible rules, we would extract rules (2) and (3). This is

because rules (2) and (3) imply the possibility of rule (1).

The concepts discussed up to this point are represented through an

example in section 3.

2.4 Definibility of Terms

Now that all the certain and possible rules are extracted, we can

measure the definibility of terms. The goal of this is to define the terms

in the decisions as a function of the terms in the conditions. How well

this can be accomplished is a function of how much the decision follows

the conditions.

Let {Qi} be a finite family of fuzzy sets. This family of sets does not

necessarily form a partition on the universal set. Let A be a fuzzy set. A

lower approximation of A through {Qi}, produces the fuzzy set:

R(A) = U I(Qi c A) Qi.
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Here, U denotes the union of fuzzy sets, and I(Qi c A) Qi denotes the fuzzy

set obtained by multiplying the components of Qi by I(Qi c A). Therefore, if

Qi is very much a subset of A, I(Qi c A) Qi is close to the whole set Qi.

Conversely, if I(Qi c A) is small, so is the contribution of Qi to R(A).

Similarly, we can define an upper approximation of A through {Qi} by:

R(A) - U J(Qi # A) Qi.

In the special cases where all the sets are crisp, and {Qi} denotes a

partition generated by an equivalence relation R, then the lower

approximation is defined as:

R(A) = {X I [X] c A},

and the upper approximation is defined as:

R(A) - {X / [X] n A # O}.

One can therefore see that in this crisp case:

R(A) c A c R(A).

One should not, however, expect these inclusions to hold in the fuzzy case

because boundaries of the relevant sets are poorly-defined.
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Application: Tumor Diagnosis

As stated earlier in this paper, knowledge aquisition is best

accomplished by looking at examples. It is therefore important to provide

an example of the concepts discussed in section 2. By examining an

application, these concepts should become clearer.

The analogy to be used here is that of a doctor (decision-maker)

examining the characteristics (attributes) of tumors and rendering a

diagnosis (decision). For this example, the attributes are size and color.

Size can be described as large and small. Color will be limited to the

descriptions of blue and red. The possible diagnosises will be either

Disease 'DA' and 'De'.

While examining seven patients, the following data is accumulated:

SmZE COLOR
P1 .3L + .8S .2R + .9B .3/DA + .6/DB

P2 .4L + .78 .4R + .7B .8/DA + .5/DB

P3 .7L + .4S .6R + .7B .5/DA + .9/DB

P4 .8L + .5S ,3R + .8B .7/DA + .3/De

P5 .2L + .7S .2R + .5B .4/DA + .2/De

P6 .9L + .2S .8R + .2B .7/DA + .8/DB

P7 .3L + .6S .7R + .1B .4/DA + .5/De
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with the following rules:

CERTAIN RULES:

If the tumor is large then D^ is present 0.5.

If the tumor is large and red then DA is present 0.5.

If the tumor is large and blue then DA is present 0.5.

If the tumor is red then DB is present 0.5.

If the tumor is large and red then DB is present 0.6.

If the tumor is small and red then DB is present 0.5.

If the tumor is small and blue then DB is present 0.5.

POSSIBLE RULES:

If the tumor is large then DA is possible 0.7.

If the tumor =s small then DA is possible 0.7.

If the tumor _s red then DA is possible 0.7.

If the tumor is blue then DA is possible 0.7.

If the tumor =s large and red then DA is possible 0.7.

If the tumor Js large and blue then D^ is possible 0.7.

If the tumor =s small and blue then DA is possible 0.7.

If the tumor as large then DB is possible 0.8.

If the tumor =s small then DB is possible 0.6.

If the tumor =s red then Ds is possible 0.8.

If the tumor =s blue then DB is possible 0.7.

If the tumor =s large and red then DB is possible 0.8.

If the tumor =s large and blue then De is possible 0.7.

If the tumor =s small and blue then DB is possible 0.6.
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Finally, we extract the certain rules and possible rules in which to keep

by using the theory explained in section 2.3. This leads to the following

rules:

EXTRACTED CERTAIN RULES:

If the tumor is large then DA is present 0.5.

If the tumor is red then DB is present 0.5.

If the tumor is large and red then DB is present 0.6.

If the tumor is small and blue then DB is present 0.5.

EXTRACTED POSSIBLE RULES:

If the tumor _s large and red then DA is possible 0.7.

If the tumor =s large and blue then DA is possible 0.7.

If the tumor is small and blue then DA is possible 0.7.

If the tumor =s large and red then DB is possible 0.8.

If the tumor =s large and blue then DB is possible 0.7.

If the tumor is small and blue then DB is possible 0.6.
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Software Design and Specifications

4.1 Software Specifications

The following is an attempt to describe the requirements

specifications for the software to be developed for partial fulfillment of

the senior project (CS 4395). The software should be designed to

simulate the main ideas in Dr. Andre' de Korvin's paper, "Extracting fuzzy

rules under uncertainty and measuring definibility using rough sets."

As in all good software design, the software should be above all user-

friendly. It should be designed to allow a user to "walk-through" the

system. This can be achieved through screen messages at every step and

error messages when appropriate (improper data entry). The software

should also be modifiable so that it may be expanded in the future. This

can be achieved through well-documented modules.

also be efficient and reliable.

These are the goals of every software system.

list of the functions, goals, and constraints of this particular system.

some instances, examples are used to better explain the concepts.

The software should

The following is a

In
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4.1.1 Input

The user should be able to:

A. Enter any number of attributes.

The paper uses two, for example: size and color. The user

should also be allowed to have any number of descriptions for

each attribute. The paper describes size with values of large

and small. The user should also be able to use medium.

a. Enter data in any numeric form.

1) The form the data is entered in the paper is in "fuzzy form",
where all values are between 0 and 1. The software

should certainly be able to manipulate data which is
entered in this form.

to enter "real data'.

numbers:

10 40

15 27

60 35

In addition, the user should be able

For example, given the following

5 50

80 25

55 33

2)

The software should be able to convert 55 to

55 -> .3/Low + .7/High
The user should also be able to set the boundaries for the

data to be entered. Using the numbers from above, the

user may wish to declare 10 as the bottom and 75 as

the ceiling. If the number 5 is entered as data, it should

be converted to: 5 -> 1/Low + 0/High. Likewise, 80

would be converted to: 80 -> 0/Low + l/High.

The user should be able to arbitrarily set these

boundaries as well as change them between applications.

C. Set the two threshold values (one for the certain rules, one for

the possible rules).

1) The user should be able to interactively change the

threshold to compare the changes, i.e. the rules the

changes affect.

2) Software should produce an error message for a threshold

value greater than 1 or less than 0.
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4.1.2 Functions and Calculations

The software should be able to:

A. Convert the inputed data into the "fuzzy sets" that are used as
the basis for all fuctions and calculations.

So Measure the degree to which a set, A, is included in another, B:

{I(AcB)}. This calculation is used to determine the certain

rules.

C° Measure the degree to which a set, A, intersects another, B:

{J(A#B)}. This calculation is used to determine the possible
rules.

O. Compare the values of I(AcB), for various A's and B's, with the

threshold value for certain rules and disregard all values of

I(AcB) which fall below the threshold. Similarly, all values of

J(A#B) should be compared to the threshold value for possible

rules with all values of J{A#B) below the threshold being

disregarded.

E. From the values of I(AcB) and J(A#B) that are at or above the

threshold, the software should extract the rules (to keep).

For the certain rules, the "prime" rules should be extracted.

For the possible rules, the "combination" rules should be

extracted. For example, if the rules are:
(1) If tumor is A and B then C is .6.

(2) If tumor is A then C is .6.

(3) If tumor is B then C is .6.

For the certain rules, we extract (2)and (3). For the possible

rules, we extract {1).

F. Convert the inclusion {I(AcB)} and intersection {J(A#B)} symbols

to english statements. The purpose of this is to help the user

to better distinguish the output.
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4.1.3 Output

The software should produce:

A. A complete listing of all rules (certain and possible) in english
for :

1) Before comparison to the threshold value, and

2) After the comparison to the threshold value.

B. The two threshold values the user has assigned.

C. The final list of extracted certain and possible rules in english.
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Abstract

Although computers have come a long way since their invention, they are

basically able to handle only crisp values. Unfortunately, the world we live in consists

of problems which fail to fall into this category, i.e. uncertainty is all too common. In

this work we look at a problem which involves uncertainty. To be specific we deal with

attributes which are fuzzy sets. Under this condition we acquire knowledge by looking

at examples. In each example a condition as well as a decision is made available. Based

on the examples given to us, we will extract two sets of rules namely: certain and

possible. Furthermore we will construct measures of how much we believe these rules,

and finally we will define the decisions as a function of the terms used in the

conditions.
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CHAPTER 1

INTRODUCTION

Despite the advancements made in computer technology to date, all the

computers on the market today are stored program sequential processing machines

built around the Von Neumann architecture, the principles for which date back to the

Turing machine, a computing model first proposed by Alan Turing in 1936. This

means that, in principle, modem day computers are designed primarily to carry out

mathematical calculations. Human expectations vis-a-vis computers know no bounds.

These expectations go beyond routine Jobs such as numerical calculations and the

processing of office work, to include support in decision-making processes, the ability

to understand natural languages, the diagnosis of malfunctions and the processing of

intellectual information such as that required in design and planning work. To

accomplish these kinds of operations, symbol processing computers equipped with

inference functions are required. However, even symbol processing machines are not

capable of handling experience and intuition, two very aspects of intelligence. This is

because conventional computers are extremely crisp, (i.e. capable of dealing with

definite values) having being designed around the binary logic of Boolean algebra.

Human experience and intuition, however, by their very nature are multi-numerical.

In other words, they are fuzzy.

This raises the question of Just how necessary it is to have computers that

are capable of processing ambiguous information, such as human experience and

intuition. After all can't most phenomena encountered in this world be thoroughly

processed mathematically? This question has been raised because today's computers

are only used to solve well-structured problems for which all information is available.

However, the everyday real world in which we live is rife with problems for which not



all information is available, andwhich arenot well structured. This projectfocuseson

sucha problem, for which aUinformationis not availableand/or not well structured.

I. I The Problem at Hand

Expert systems of a certain kind rely essentially upon the availability of a

method for handling uncertainty. These systems cannot be conceived without a

decision being firstly made about the choice of this method. Obviously this is true for

all expert systems using empirical knowledge which in itself is not absolutely certain.

As an example, we could mention a medical expert system which draws conclusions

from the observed symptoms about whether or not a certain disease is present. All

conclusions of this type inevitably contain an amount of uncertainty. However the

rules which lead to these conclusions should not be confused with logical rules and

must not be treated in the same way.

We shall call expert systems of this type diagnostic systems. They are

mostly in the field of medicine, but can also be used in many other applications such as

meteorology or geology, and of course for the control of technical installations.

Therefore the expression diagnostic system should always be understood in the sense of

an expert system, which relies upon empirical interdependeneies for drawing its

conclusions and consequently requires the treatment of uncertainty.

in order to make it possible to decide upon an appropriate therapy, a

quantitative measure of uncertainty has to be applied in all relevant cases of a

diagnostic system. Moreover it may be sensible to establish rules which, in certain

stages of the investigation, direct the investigator's efforts depending on the degree of

certainty achieved for possible hypothesis.

It is evident therefore, that for researchers who design diagnostic systems

the question has to answered, as to which method of measuring uncertainty should be

employed. For more than three hundred years scientists, philosophers,
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mathematicians and statisticians have used the concept of probability to describe

degrees of uncertainty. Over three centuries a huge amount of theoretical results and

experiences concerning the applicability of probability theory in different fields of

human knowledge has been accumulated. Nevertheless many doubts concerning the

appropriateness of the use of probability in diagnostic systems have arisen during the

last decade. In the following sections we look at the probability theory and see why this

isso.

1.2 Reasoning and Probabil/ty Theory.

Decision making often involves the use of rules. Simple rules are

acceptable to most people in their everyday life, e.g.

In India, if you are under 60 years of age then you are entitled to a retirement

position.

A rule for entitlement might be more complex, but understandable, e.g.

If you are at least 60 years old and female and you have been resident in India for

at least 25 years, or if you are male and at least 65 years old and you have been

resident in India for at least 30 years then, provided you are not receiving a

disability pension, you are entitled to the retirement position.

People use 'ff .... then .... ' statements in conversation, and often use rules in their

everyday lives. However, problems which require expertise are not deterministic, i.e.

the solutions cannot be stated in simple rules. Where Judgement is involved, people

often use words like probably, unlikely, almost certainly, i.e. uncertainty is involved.

In some cases they quantify what they mean. For example:

I am 99% confident that if you water the plant, its condition will improve.

There is a small risk, about 596, that you have this disease.
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The ways in which people use these percentages are ill defined and often inconsistent.

However. as we shall see in the next section, there is a mathematical theory of

probability which provides a logical model for uncertainty.

1.2.1 Probability Theory.

Probability theory originated in the seventeenth century in the context of

gambling. A gambler assesses his chance of winning and therefore the risk associated

with his bid [3]. This process is very similar to that of an expert weighing up evidence,

and Judging whether he has sufficient evidence to Justify a particular course of action.

Chance, expectation and risk are components of both probability theory and expert

judgements.

Probability is a measure of certainty between 0 and 1. The extreme values

denote impossibility and certainty. Most people would understand that if a fair coin is

tossed then the probability of its landing on a certain side is 0.5. This is because we

ignore the possibility of its landing on its edge or not landing at all, and the other two

outcomes are equally likely. Furthermore, only one of the events (head or tail] can

occur at once, i.e. the events are mutually exclusive. This leads us to the classical

definition of probability:

If a random experiment has N possible outcomes which are all equally

likely and mutually exclusive, and n of these possibilities has outcome

A then the probability of outcome A is n/N.

For example, consider a standard pack of 52 playing cards which has been shuffled so

that the order of the cards is unpredictable. If a card is picked at random then the

chance that it is a club is 13/52 = 0.25. This is a very simplistic view of uncertainty.

The definition depends on the terms random, mutually exclusive and equally likely. It

cannot help much with questions like:

What is the probability that a child born in the United States will be a male?

4



What is the probability that the pain is caused by indigestion, and not a serious

illness?

These are all real questions, and experts continually make similar Judgements. If we

looked at the record of births in the United States over the past two years then we could

calculate the relative frequency of male births, i.e. the ratio of number of boys to

number of births. We would expect this to be close to the true probability. Assuming

that there had been no genetic changes, a more reliable estimate could be obtained from

the records of the past ten years. So, ff we can imagine a series of observations under

constant conditions then the probability p of event A can be approximated by the

relative frequency of A in a series of such observations. In practice 'true' probabilities

are almost impossible to quantify, and most probabilities used are estimates based on

relative frequencies.

1.3 Why not Classical Probability Theory?.

Even though, the basic ideas prevailing in some considerations about

diagnostic systems sound convincing, they violate fundamental requirements for

reasonable handling of uncertainty. These ideas may be described as follows: If a

certain fact is observed, a measure M 1 of uncertainty concerning the hypothesis in

question must exist. If in addition another fact is observed, which produces a measure

M2 with respect to the same hypothesis, a combination rule must be given, which

yields the measure of uncertainty of this hypothesis resulting from both observations.

Such a rule, which calculates the measure of uncertainty for the combined observation

as a function of the measures M 1 and M2 can never take into account the kind of mutual

dependence of the two observed facts. It might well be that these facts nearly always

occur together, if indeed they occur at all. In such a situation the second observation is

redundant and should not be used to update the measure of uncertainty. In another

situation the two facts very seldom occur simultaneously and ff they do, then this is an
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important indication concerning the hypothesis in question. If they do occur

simultaneously, the updating of the measure of uncertainty should have drastic

consequences. Classical probability theory which treats these two situations equally

cannot be considered useful.

Another argument against the probability theory is that : Is is Justifiable

to attribute a certain measure of uncertainty to the observation of a given fact,

irrespective of the circumstances? For example let's take the example of a medical

diagnostic system: If a symptom Z is observed, and a measure of uncertainty is used

conceming the hypothesis of the presence of a certain disease, can this measure remain

valid, if this disease occurs much more frequently than before? Once again an

appropriate use of probability theory reveals the kind of dependence prevailing in this

case. However, this will not be a popular result, because it states that a diagnostic

system using this type of measure of uncertainty cannot be applied to populations

showing different frequencies of this disease.

The problems of using probability models are compounded by the fact that

people do not really understand the theory [6]. The theory itself is consistent and

correct, but in order to apply it we need to make assumptions about underlying

distributions and independence and sometimes use sophisticated mathematics to

develop a consistent model for the system. Even given a consistent model people find it

hard to estimate conditional probabilities. Statistical tests are a method of using

probability theory to Judge the weight of evidence and of selecting an hypothesis from

two alternatives. However, many of the theorems and methods needed when using

probabilities in diagnostic systems require the expert to estimate probabilities,

sometimes without recourse to relative frequencies. Yet another problem with forcing

experts to describe their inference in terms of probability theory is that the theory is

not a natural method of reasoning.
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1.4 Discussion

Recently, a lot of time and effort has been expended by the expert systems

research community to the acquisition of knowledge under uncertainty. Uncertainty

arises in many different situations. It may be caused by the ambiguity in the terms used

to describe a specific situation, it might be caused by skepticism of rules used to

describe a course of action or by missing and/or erroneous data.

In order to deal with uncertainty, techniques other than classical logic

need to be developed. Statistics is the best tool available to handle likelihood.

However, in many cases probabilities need to be estimated, sometimes without even

recourse to relative frequencies. Estimates, then are likely to be very inaccurate. Many

authors have cited theoretical weaknesses of expert systems based on statistical

technique. In particular, there has been an attempt to create a system for the

verification of indications for treatment of duodenal ulcers by HSV on the basis of

statistics. The results were counter-intuitive and the system was rejected by

physicians. The Dempster- Shafer theory of evidence or the theory of belief functions,

give a useful measure for the evaluation of subjective certainty. The Dempster-Shafer

theory has recently become popular. For an in depth-look at the Dempster-Shafer

theory the reader is referred to [10]. Fuzzy logic, based on Zadeh's theory of fu_'y sets

[where the degree to which an optional element (a) belongs to set (A) is determined by

assigning it a value or grade ranging from 0 to 1 ) is another means of handling

uncertainty. However, this too has problems [9]. There is extensive literature on ways

to deal with uncertainty in expert systems, like a combination of statistics and fuzzy

logic, theory of endorsements [I], nonmonotonlc logic [7, 8], modal logic etc. [5].

One of the most popular ways to acquire knowledge is based on learning

from examples. An effective tool to infer knowledge from examples is rough set theory.

Rough set theory was introduced in 1981 by Z. Pawlak as a method to acquire

knowledge under uncertainty. The main assumption of the rough set theory is that the
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information stored in the data base like system, called an information system, may

contain inconsistencies. In the process of acquiring knowledge these inconsistencies

are taken into account. Thus, using the basic tools of rough set theory, which we will

look at closely in the next chapter, two sets of rules are produced namely certain and

possible. The main advantage of the rough set theory Is that it does not need any

preliminary or additional information about data like probability in statistics.

Moreover rough set theory has been successfully implemented in knowledge-based

systems in medicine and industry. In particular, an expert system based on rough set

theory for engineering design is being developed at Wayne State University, Michigan,

and University of Regina, Canada.

1.5 Scope.

In thIs work, we will deal with a setting where a decIsion maker Is faced

with uncertain (i.e. fuzzy) symptoms and makes a fuzzy diagnosis which might be

strongly or weakly based on these symptoms. The cases which we will look at are not

"textbook cases" and the values of attributes are not crisp. Moreover the diagnosis Is

not of a "pure type". It is a mixture of several "pure types". Thus, a patient might have a

diagnosIs of the type .3/D A + .6/D B meaning that the physician believes the fuzzy

symptoms reflect disease DA with strength .3 and disease DB with strength .6. From

such a setting we will extract fuzzy rules using the rough set theory.

Fuzzy rules are naturally present in descriptions, crisp rules are the

exceptions. Also, fewer fuzzy rules are needed than crisp ones to build an expert system.

Thus a rule such as : If the tumor is somewhat large then the presence of skin cancer IS

somewhat likely is the type of rule experts naturally use as opposed to giving the size of

a tumor and a number expressing the probability of cancer.

In the first part of this work we will develop a methodology to extract rules

such as the ones stated above, from fuzzy symptoms and fuzzy diagnosIs. In fact we will



extracttwosetsof rulesi.e.©ertalnandpo_Ible rules as well as a measure of how much

we believe these rules. In the second part we will look at a related problem that is to

define the diagnosis in terms of the symptoms. In the next chapter we take an in-depth

look at the rough set theory which is necessary to understand the rest of this paper.
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CHAPTER 2

ROUGH SETS

Acquiring knowledge under uncertainty is one of the main problems of

expert systems. One of the most popular ways to acquire knowledge is based on learning

from examples. In 1981. Z. Pawlak introduced a new tool, namely rough set theory to

acquire knowledge under uncertainty. In this chapter we look at the basic concepts of

rough set theory. Other methods have been developed prior to the introduction of rough

set theory. However, use of the rough set theory seem to have many advantages over the

other methods. One of the main advantages of the rough set theory is that it does not

need any preliminary or additional information about data (llke probability in

statistics, basic probability number in Dempster-Shafer theory, grade of membership,

or the value of possibility in fuzzy set theory). Another advantage of rough set theory is

that its algorithms are very simple, and the theory itself is clear and easy to follow.

Moreover the theory has been successfully implemented in many cases in expert

systems in medicine and industry.

2.1 Basic Notations and Concepts

All the concepts mentioned in this section can be found in [4]. Let U be a

nonempty set, called the universe, and let R be an equivalence relation on U called an

Indlscernibility relation. An ordered pair A = (U,R) is called an approximation space.

For an element x of U, the equivalence class of R containing x will be denoted by [X]R.

Equivalence classes of R are called elementary sets in ,_ We assume that the empty set

is also elementary. Any finite union of elementary sets in A is called a definable set in

A.
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Let X be a subset of U and we wish to define X in terms of definable sets in

A. Thus, we need two more concepts. A lower approximation of X in A, denoted by

is the set given by

{xa U[ [x]R _ X}.

An upper approximation of X in A, denoted by RX, is the set given by

{xa UI[x]ROX" O}

The lower approximation of X in A is the greatest definable set in A,

contained in X. The upper approximation of X is the least definable set in A containing

X. A rough set inA (or rough set, ffA is known ) is the family of all subsets of U having

the same lower and upper approximations in A.

Let X and Y be subsets of U. Lower and upper approximations of X and Y in

A have the following properties:

_RX _X _ RX,

Bu=u= _u,

R¢=¢=R¢,

IR.O,CUY} _R__X U _RY,

_(x u Y)=_x u _.

_131xnVI=_Rx n BY,

_(x n Y) c _x n _Y,

_RtX-Y) _ _RX- _RY,

_(X - Y) _RX- RY,

B(-X) = -RX,

_(->0 = -BX,

_RX U R(-X) =X.

]_R(._.FOI)= R(_LRX)= BX,

R(RX) = B(RX) =

where -X denotes the complement U-X of X.
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Let x be an element of U. We define two additional membership relations _ and

e, called strong and weak memberships, in the following way

xi_X iffx E_I_X

and

m

xe XiffxE RX

with meanings: x iscertainlyin X and x isIx_mibly in X respectively.Our terminology

originatesinthatwe want todecideifx isinX on the basis ofdefinablesetsinA rather

than on the basis ofX. This means thatwe dealwithBX and RX insteadofX, and since

_RX _ X _ RX, ff x is in RX it is certainly in 3L On the other hand, ifxisinRX, iris

possibly in X.

2.2 Information Systems

An information system is similar to a data base. The difference is that the

entities of such an information system, called objects, do not need to be distinguished

by attributes. The information system serves as the basis for knowledge acquisition,

producing rules from examples. Therefore, attributes are divided into two types:

conditions and decisions (or actions). Objects are described by values of conditions,

while classifications made by experts are represented by values of decisions.

For example, ffthe system is a hospital, the objects would be patients, the

condition attributes would be tests, and the decision attributes would be diseases. Each

patient would be characterized by test results and would be classified by physicians

(experts) as being on some level of disease severity. As another example if the system is

an industrial process, the objects would be sample of processes taken at some specific

moments in time. Conditions would be the parameters of the process, while the

decisions would be actions taken by the operators (experts).

An information system S is a quadrapule (U,Q,V,P)where U is a nonempty

finite set, and its elements are called objects of S, Q = C u D is a set of attributes, C is a
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nonempty finite set, its elements are called condition attributes of S, and D is also a

nonempty finite set, and its elements are called decision attributes of S, D N C = _,

V = UqE QVq is a nonempty finite set, and its elements are called values of attributes,

where Vq is the set of values of attribute q, called the domain of q0 and p is a function of

U x Q onto v, called a description of S, such that p(x,q) E Vq for all x a U and q E Q.

Let P be a nonempty subset of Q, and let x, y be members of U. Objects x and y are

indiscernible by P in S, denoted by x 15y, tit for each q in P, p(x,q) = p(y,q). Obviously, 15

is an equivalence relation on U. Thus P defines a partition on U; such a partition is a

set of all equivalence classes of 15. This partition is called a classification of U

generated by P in S, or briefly a classification generated by P.

2.3 Rough Deflnibillty of a Set

For a nonempty subset P of Q, an ordered pair (U, i5) is an approximation

space A. For the sake of convenience, for any X _U, the lower approximation of X in A

and the upper approximation of X in A will be called P-lower approximation of X in S

and P-upper approximation of X in S, and will be denoted by PX and PX, respectively. A

definable set X in A will be also called P-definable in S. Thus, X is P-definable in S iff

_X= PX.

For a nonempty subset P of Q, a set x _U which is not P-definable in S = (U,

Q, v, P) will be called P-undefinable in S. Set X is P-undefinable iff PX * PX.

The set X will be called roughly P-definable in S Iff PX * _ and PX * U.

The set X will be called internally P-undefinable in S iff P_X= _ and PX _ U.

The set X will be called extemally P-undefinable in S iff PX * _ and PX = U.

The set X will be called totally P-undefinable in S iff PX = _ and PX = U.

For an intemally P-undefinable set X in S we can not say with certainty

that any x E U is a member of X. For an extemally P-undefinable set X in S we cannot

13



exclude any x a U being possibly a member of X. In the next section we look at an

example which illustrates the above mentioned concepts.

2.4

table.

Table

An Example

Let us look at the information system which is given by the following

I. An example of information system:

C

C D

Temperature Headache Influenza

Xl normal no no

X2 normal yes no

X3 normal yes yes

X4 subfebrile no no

X5 subfrebile yes no

X6 subfebrile yes yes

X7 high no yes

X8 high yes yes

X9 high yes yes

The classification, generated by the set C of conditions attributes, called

Temperature and Headache, is equal to

{{Xl}, {X2, X3}, {X4}, {X5, X6}, {X7}, {X8, X9} }.

14



The set D of decision attributes consists of one member, called Influenza.

As can be seen in the table, an expert introduced two inconsistencies. First, he assigned

different values of condition attributes to patients x2 and x 3, in spite of the fact that

both patients, x2 and x 3, characterized by the same values of condition attributes

Temperature and Headache. Yet another inconsistency is associated with patients x 5

and x 6.

Letusassun_thatX={x I p(x.d)=no), i.e. X={Xl, x2, x4, x5}. ThusX

represents all patients in U, classified by an expert in the same way, as being not sick

with influenza. Then

c_x = {xl} u {x4} = {x I, x4},

CX={Xl} tJ {x2, X3} U {x4} U {x5, x 6} = {xI, x 2, x3, x4, x5, x6}

It is the presence of inconsistencies that produce a difference between the lower and

upper approximation.

In our example, CX, _ and CX - U, therefore X is roughly C-definable in S. For

set X, sets _X and CX are illustrated by the foUowing figures:

CX X

/,
0

2

/
XI

X4

X7

X2 X3

X5 X6

X8 X9

Figure (a) lower approximation CX of set X
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0

2

X

3/,/
/

Xl

X4

X2

X5

C_

X7 X8 X9

X3

X6

Figure {b} upper approximation CX of set X.

The set X determines the following rough set:

{ {Xl. x2, x4. x5 l, {Xl, x2, x4, x61. {Xl. x3, x4, xs}, {Xl, x3. x4. x6} 1.

For eacample, Xl__X, hencexl e X, andx 3 _X, butx 3 e X

Now let us represent the decision of the expert from the example, corresponding

to set X, by rules. Any such a rule is a conditional statement that specifies a decision

under conditions. The smallest subsets of U which may be described by rules, using the

set C of conditions, are the members of the classification generated by C. Therefore, we

may represent set X by rules iff X is C-definable. If set X is C-undefinable we cannot

represent it by a single set of rules. Instead, we may represent sets _X and CX by

different sets of rules. In particular a rule derived from CX is certain, and a rule derived

from CX is possible.

In the example, X is roughly C-definable m S. The certain rules,

corresponding to set CX of positive examples and set -CX of negative examples, are

(Temperature, low) --> (Influenza, no)

(Temperature, subfebrlle) ^ {Headache, no) --> (Influenza, no),

and the possible rules, corresponding to set C,X of positive examples and set -CX of

negative examples, are
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(Temperature, low) --> {Influenza, no}

{Headache, no) --> (Influenza. no).

As can be seen from the above example, uncertainty is all too often

present in the conditions and the decisions. The conditions and the decisions fail to

partition the universe into well defined classes and some overlap is present. In real

cases we do not have sharp boundaries between say normal, subfebrlle, and high. The

best we can hope is that normal, subfebrUe, and high, "somewhat partition" the

universe by not overlapping "too much." In the next chapter we will look at a method

which would help us deal with such a setting, where attributes fail to have sharp

boundaries.
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CHAPTER 3

FUZZINESS AND FUZZY SETS

The way we humans actually store and manipulate concepts in the mind is

a subject of some debate. However, we communicate conscious processes to other people

verbally. This type of reasoning is done with words rather than numbers.This is why

we find probability theory counter-intuitive, and in some cases difficult to understand.

The many shades of meaning which give language its richness and colour contrast with

the precise rigour of mathematical theory, logic and computer languages.

There is a difference between the meaning and usage of words. It is not the

strict dictionary definition of a word which is important, but the way in which an

expert uses a word. At times an expert may find it difficult to define a particular word,

though usually he will be able to give an example of a use. We usually find technical

terms relatively easy to define. However, commonly used words are less easy to define,

either in abstract or even in context. For example let's consider the word "cold". What is

the criterion for saying that the weather is cold? The answer depends on factors like

temperature and the time of year. For instance a cold summer's day can be milder than

a warm winter's day. It is relatively easy to quote examples of cold days and days which

are not cold. There is a vagueness or ftu_la_i about a certain range of temperatures;

they might constitute coldness, and they might not. In this chapter we take an in-depth

look at this aspect of vagueness or fuzziness.

3.1 Fuzziness

Everyone uses fuzzy words in their everyday lives, and seldom question

whether they or others understand their usage of those words. An individual may not
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be consistent in his own use of words, and there is even less chance that someone else

has the same usage. Nevertheless, we all use words expressing belief when we are

reasoning or arguing. For example, let us look at a quote from a doctor:

'I wouldn't expect that disease in a young glrl of 20. It's so rare as to be negligible.

It isn_ worth carrfing out the test on a young person. If they're young I'd most

likely not do the tests. If they are older I probably would do them."

Here the doctor is using vague rules. Some fuzzy words which he uses are young, older,

negligible, so rare, most likely, probably etc. When pressed to define such words,

experts often find it extremely difficult.

There is also a distinction between uncertainty and imprecision, which is

not always reflected in the models used in computer systems. Uncertainty refers to

something which is not known for sure, and imprecision refers to something whose

value is not known accurately. Statements can be uncertain, imprecise or both. For

example:

'There will definitely be a rise in temperature: somewhere between 10 degrees

and 25 degrees."

is imprecise but certain whereas:

"I think you should leave it on. If so you should set it to 180 degrees."

is precise but uncertain.

3.1.1 IF .... THEN rules

Crisp mathematical rules can be easily defined. The basis for a rule is:

IF A then B or A --> B

This states that ff A is true, then B is necessarily true too. It does not state that B

implies A, and B can be true with A false. It is difficult to find a clear example of this

concept except in the context of mathematics, for example:

ifX=2 thenX2 = 4
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Note that X2 = 4 does not mean that X is the value 2; X = -2 is another solution. The rule

is exactly equivalent to:

Not B --> Not A

Unfortunately, in common usage "if' and "only if' are interchanged and used

improperly all too often.

Statements based on logic are made more complex by the use of AND and

OR. AND is easy to understand, but OR is ambiguous. If a child is told '_rou can have

sweets or an ice cream", the child will usually understand that she is not allowed both.

This is an exclusive OR. The statement 'The leaves on the tree are green or yellow"

implies that possibly some leaves are green and others are yellow. This is an inclusive

OR: Yellow and green can occur together. The English language does not distinguish

between these two meanings, and the interpretation may depend on the context. In

formal logic and computer logic, the inclusive OR is more common. Further

ambiguities arise when both terms AND and OR are used in the same statement. For

example let us consider the rule:

"If the patient is over 40 and has high blood pressure or is female then I would

refer them."

Does this statement mean:

"If the patient is over 40 and has high blood pressure or ff the patient is over 40

and is female then I would refer them."

or does it mean:

"If the patient is over 40 and has high blood pressure or if the patient is female

then I would refer them."

Only the person who made the statement can identify the correct interpretation. Note

that the two interpretations give potentially different outcomes for a female patient

under the age of 40. Again, in computer logic the meaning is unambiguous - the problem

arises because of the way we use words.
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3.1.2 Symptoms

Much Judgement and reasoning using vague rules involve weighing up the

strength of evidence in symptoms. For example:

"Meniere's disease causes spells of dizziness."

is a rule of the form:

If A then B

i.e. ff you have Meniere's disease then you will have spells of dizziness. If we are told

that a patient has spells of dizziness then it is more credible that he has Meniere's

disease. However, dizziness can be caused by other illnesses or disorders. If dizziness is

a common ailment for this type of patient then we do not have much evidence for

Meniere's disease, but if it is rare except as a consequence of the disease, then our

inference is stronger. The strength of our inference depends on how likely B is in itself.

If B is very common, then we have little evidence for A; if B is very rare then A becomes

much more credible. So B is true makes A more credible is our vague rule.

In practice, there is usually more than one symptom, or evidence, i.e. the

rule is:

A --> B I, B2 ....... Bn

For example:

"Meniere's disease causes spells of dizziness, tinnitus, and progressive hearing

Ioss."

This form of reasoning is the one which is often represented by Baye's rule. The weights

of evidence used in the doctor's diagnosis are not independent; it is a combination of

symptoms which gives credibility to the solution.
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3.1.3 Uncertainty in Data

The vagueness or uncertainty which is an intrinsic feature of Judgement is

not unique to rules. Data presented to an expert or expert system can also be uncertain.

Some data are clear facts with a yes/no answer, for example:

The applicant is over the age of 18

but others may be fuzzy:

The patient may have suffered from indigestion

So expertise involves dealing with uncertain data, and uncertain inference rules using

that data. Much of the skill in Judgement lies in weighing up the relative merits of data,

facts guesses and hypothesis, etc., and using a plausible line of reasoning with them.

There are essentially two aspects to this uncertainty: belief and value. Belief is

analogous to probability and measures the level of credibility whereas probability is a

numerical measure. People generally use words to express belief. There are over 50

terms in the English language expressing belief, and the number can be increased by

qualifiers such as very, extremely etc. However, if a subset of these terms could be

agreed upon, together with an hierarchy expressing the relationships between them,

then there is no reason why the expert should not be able to express his knowledge in

simple English which is natural to him. For example the figure on the next page shows

a simple hierarchy showing the relationships between terms such as possible, certain

and definite. A term low down on the hierarchy is stronger than the one higher up. So

'certain' is stronger than 'probable', and proved implies 'definite'. The main problem

with this is ascertaining whether the expert is consistent in his usage of words, and

whether the agreed relationships make sense to other people. The other element, that

of value, is analogous to risk. Terms expressing value are those such as fatal, serious,

dangerous, undesirable, etc. A possibility which is considered likely and serious may

warrant immediate investigation, whereas one which is highly probable and

undesirable may not. It will be necessary to draw up similar diagrams representing
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POSSIBLE

PROBABLE LIKELY

CERTAIN DEFINITE

Figure (a)

PROVED

Hierarchy chart representing relationships
_w_Ids,

relationships between words describing risk or value as well, if the uncertainty

handling is to be written in words. If the expert can do this then it will usually be a

valuable exercise. The problem, with using words is that there is such an abundance to

choose from, but the advantage is that the language is easy for the expert to use. Risk is

extremely important in reasoning processes. A low probability high risk situation

might warrant investigation before a high probability low risk one. It is the

importance which matters. Reasoning seems to be multl-dimensional and probability

theory on its own seldom provides an adequate framework. In other words objective

probabilities do not embrace all facets of human Judgement.
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a.9  Sets

Even though numerical models for belief have many disadvantages, It

cannot be denied that many famous expert systems do use them. Pure probability

theory has been considered inadequate and some famous systems use certainty factors.

Another important theory which is used in expert systems is the fuzzy set theory. Fuzzy

set theory and fuzzy logic were formulated by Zadeh, and have since been applied to

many problems where traditional crisp logic and mathematics are inappropriate

because of the inherent uncertainty.

in fuzzy logic it has a degree of truth.

Is the object black? (or white)

In traditional logic a proposition is true or false;

For example, let us consider the question:

In crisp logic the answer can be either yes (black) or no (white). In fuzzy logic an object

would be given a degree of blackness, where 0 indicates 'definitely not' and 1 Indicates

'definitely'. An off-white object could be measured by 0.2, say, and a grey object by 0.6.

This would not mean that one was three times as black as the other, but would enable

the members of a set to be ranked.

U=UI +U2 + .......... + Un

So U is the set ofn objects U1, U2,

Let U be the universe of discourse or domain:

.... Un which we are considering. A fuzzy set F is

described by its members and their degrees of membership to that set, for example:

F = M1/U 1 + M2/U2 + .......... + Mn/Un

U 1, U2 ...... Un are members with degrees of membership M 1, M2 ..... Mn, and + denotes

union not addition. In other words this equation is a way of listing the various

members together with their degrees of membership. Equivalently, F is given by:

F = Y.MF (Ui)/Ui

where Z denotes 'the set of. We also define the fuzzy versions of union (inclusive OR),

intersection(AND) and complement (NOT}.

24



The grade of membership of U in the union F U G (F OR G} is at least that of

its membership in the individual sets F, G. We do not know any more than this, and so

the grade of membership is given by the maximum of the two. So:

F U G = Z MF {U)VMG{U}/U

where V denotes maximum. The grade of membership of U in FOG [FAND G) can be no

greater than the membership in each of F and G. So intersection is defined by:

FNG = ZMF(U)^MG(U}/U

where ^ denotes minimum. The value 1 denotes full membership and 0 no membership.

The complement of F, F' is given by :

F' = Z(I-MF(U)}/U.

XI

X2

X3

X4 X5 X6

Figure (b) Set of six figures
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Now let us look at an example by considering the objects in figure(b). Suppose L is the

fuzzy set of large shapes, and R the fuzzy set of round shapes then L and R could be

defined by:

L = 0.1/Xl + 0.6/X2 + 0.6/X3 + 0.8/X4 + 0.4/X5 + 0.2/X6

R= 0.1/X I + 0.7/X2 + 1.0/X3 + 0.5/X4 + 0.1/X5 + 1.0/X6

L U R is the set of objects which are large or round. X1 is not really large and not

particularly round, so its membership in LUR is low. X 6 is not large but perfectly round

so its membership in large or round is 1.

L U R= 0.1/X 1 + 0.7/X 2 + 1.0/X3 + 0.8/X4 + 0.4/X5 + 1.0/X6

I_R is the set of objects which are large and round

L = 0.1/X 1 + 0.6/X2 + 0.6/X3 + 0.5/X4 + 0. I/X5 + 0.2/X6

In this case X 5 and X6 have low membership values for large and round (/__R) because

membership in at least one of L and R is low. The strongest membership is for X2 and

X3 both of which have fairly high membership in both L and in R together.

L' is the set of not large (i.e. small) objects

L '= 0.9/Xl + 0.4/X2 + 0.4/X3 + 0.2/X4 + 0.6/X5 + 0.8/X6

So X1 has a high membership in L' and X4 has a low membership. The different

membership values mean that it is not sensible to count the members in a fuzzy set.

Instead we can define the power P of a set F by:

P{F) = Z MF{X}

So in our figure(b):

P(L} = 2.7

P{R} = 3.4

PflAJR) = 4.0

In the next chapter we discuss the concepts of the present work, which is to extract

fuzzy rules under uncertainty and to measure definibility using rough sets.
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CHAPTER 4

EXTRACTING FUZZY RULES

AND MEASURING DEFINIBILITY

The main purpose of the present work is to study a setting where a decision

maker (expert] is faced with uncertain (i.e. fuzzy) symptoms and makes a fuzzy

decision. Let's keep in mind that these decisions may be strongly or weakly based on the

conditions. From the data we have, we will extract fuzzy rules, in fact we will extract

two sets of rules i.e. certain and possible rules as well as a measure of how much we

believe these rules. Finally we will define the decisions in terms of the symptoms.

Before we go any further we will look at the properties, notations and operations of

fuzzy sets which is required to understand this work.

4.1 Functions on pairs of fuzzy sets

We now look at some functions and properties of fuzzy sets. All the

concepts explained here can be found in [2]. Let's recall from the previous chapter that a

fuzzy subset A of U is defined by a characteristic function

_A : U ........ > [0,I].

The notation

Zat/x i (0 <at<l}
i

denotes a fuzzy subset whose characteristic function at xi is ai.

Moreover let us recall that ffA and B are fuzzy subsets A_B, AUB, -A are defined by

Min{ _A{x}, _B{X} }, Max{ _A{x}, _B(X} }, and 1- _A{X} respectively. The implication

A ..... > B is defined by -AUB and the characteristic function corresponding to -At9 B is

given by
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Max{ 1- A(x), B(x) }.

Let us now go through an example and see how these work:

LetA= (.5, .7, .2, .4) and

Let B = (.4, .8, .9, .6]

then we have the following :

Min{ lIA(X), liB(X) } = (.4, .7, .2, .4)

MaxillA(X), gB(X)} = (.5, .8, .9, .6)

I- gA(X) = (.5, .3, .8, .6)

Now we look at two new functions on pairs of fuzzy sets.

I(ACB) = inf Max{ I-A(x), B(x) }

X

J(A#B) = Max Min {A(x), B(x) }.
x

where A and B denote fuzzy subsets of the same universe. The function I(AcB) measures

the degree to which A is included in B and the function J(A#B) measures the degree to

which A intersects B. If A and B are crisp sets it is evident that

I(ACB) = 1 if and only ifACB

otherwise it is O.

Moreover in the case of crisp sets

J(A#B) = 1 if and only ifAC_B *_

otherwise it is 0.

In addition to the above, lets also look at the following relation as shown in [2]

I(ACB) = I- J(A#-B).

The right hand side of the above equation is

inf(l - Min{A(x), l-B(x) })
x

= infMax[1-A(x), l-(l-B(x))}
x
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=inf Max{1 -A[x), B(x} }.
x

In the next section we go through an example and show step by step how

fuzzy certain and possible rules can be extracted from raw data.

4.2 An Example

Let us consider the following table which is the kind of raw data we will be

dealing with in this work, i.e. we will have a set of conditions and a set of decisions

whose values are given using the fuzzy set theory.

Table I

PATIENTS SIZE _R DECISIONS

P 1 3/L + .8/S .2/R+ .9/B .3/DA + .6DB

P2 .4/L +. 7/S .4/R +.7/13 .8/DA + .5/DB

P3 7/L + .4/S .6/R + .7/B .5/DA + .9/DB

P4 .8/L + .5/S .3/R + .8/B .7/DA + .3/DB

P5 .2/L + .7/S .2/R + .5/R .4/DA + .2/DB

P6 .9/L + .2/S .8/R + .2/B .7/DA + .8/DB

P 7 .3/L + .6/S .7/R +. I/B .4/DA +.5/DB

L = Large R=Red

S = Small B = Blue

D a = Disease A

Db = Disease B

We will interpret the above table as a case where an expert is trying to determine the

presence or absence of a disease by looking at the size and color of a tumor. The first
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column represents a number of patients i.e. P1, P2 ..... P7. The symbols L and S stand for

large and small respectively, and the symbols R and B stand for Red and Blue

respectively. So we can interpret that patient P1 has a tumor that is Judged to be .3 large

and .8 small. In this particular case, let us assume that a number of physicians are

looking at the tumor, and that a certain number of them Judge the tumor to be large,

and others Judge it to be small. So in our case the numbers .3 and .8 denote relative

frequencies. However, it does not need to be so, i.e. these numbers could reflect some

judgement and need not be generated as relative frequencies. The decision column

shows a fuzzy diagnosis. So from our table, one's interpretation could be that patient P 1

is diagnosed to have disease DA and the corresponding belief is .3. Also patient P1 is

diagnosed to have disease DB and the corresponding belief is .6 strong.

Now what we want to do is to take these cases and unravel them into fuzzy

rules as to when disease DA or DB is present. The first step is to take this raw data and

convert them into fuzzy sets as follows:

DA=.3/X1 + .8/X2 + .5/X3 + .7/X4 + .4/X5 + .7/X6 + .4/X7

The fuzzy set for DA is obtained by taking the union of the values of DA of all the

patients. Similarly fuzzy sets are created for large, small, red and blue as follows:

L=.3/X I + .4/X 2 + .7/X3 + .8/X4 + .2/X5 + .9/X6 + .3/X7

S=.8/X1 + .7/X2 + .4/X3 + .5/X4 + .7/X5 + .2/X6 + .6/X7

R=.2/X 1 + .4/X 2 + .6/X 3 + .3/X 4 + .2/X 5 + .8/X 6 + .7/X7

B=.9/X 1 + .7/X 2 + .7/X3 + .8/X4 + .5/X5 + .2/X6 +. I/X7

The next step would be to find the minimum degree to which possible combinations of

symptoms imply disease DA i.e. find the certain rules. This is done by computing

I(LCDA), I(SCDA}, I(RCDA), I(BCDA), I(LNRCDA), I(I_BCDA}, I(SNRCDA). Similar

computations would be carried out for DB.

Carrying out the computations would yield the following results:

I(L c DA} = .5 I(L c DB) = .3 I(S c DA} = .3
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I(S c DB) = .3

I(B c DA) = .3

I{L nR cDB) = .6

I(S riR CDA) = .4

I(S nB CDB) = .5

I(R c DA) = .4

i_Bc n_ = .3

I{L NB CDA} = .5

I{S nR CDB) = .5

I(R c DBI = .5

I(L C_R CDA) = .5

I(L riB CDB) = .3

I(S rib c DA] = .3

Now all these yield certain rules. But we may not want to keep all the rules in order to

avoid any partial implications. So we would set a threshold value, say for this example

let us choose threshold value (a) to be .5. This would throw away any rule which

evaluates below this threshold. Of course the lower the a is, the more partial

implications are taken into account. The choice of a is very much problem dependent.

So after applying the threshold value the cerUdn rules we are left with are as follows:

lithe tumor is large then D A is present is 0.5

If the tumor is large and red then D A is present is 0.5

lithe tumor is large and blue then DA is present is 0.5

If the tumor is red then DB is present is 0.5

lithe tumor is large and red then DB is present is 0.6

If the tumor is small and red then DB is present is 0.5

If the tumor is small and blue then D B is present is 0.5

Next we find the possible rules by using the second function which is J(X#Y). Again we

choose a threshold value and discard any rules which falls below this threshold value.

These values measure the degree to which X intersects Y, and the rules generated by

these are the possible rules. So carrying out the computations we get :

J(S, DA) = .7

J(R # DB) = .8

J(L NR #DA) = .7

J(S # DB) = .6

J(B # DA) = .7

JIL nR #DB) = .8

J(R # DA) = .7

J(S # DB) = .7

JIL fiB #DA) = .7
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J(L nB #DB) = .7 J(S NR #DA) = .4 J(S NR #DB) = .5

J(S nB #DA) = .7 J(S NB #DB) = .7

For the possible rules let us set the threshold value (a) to .6. This would yield the

following possible rules.

If the tumor is large then DA is possible 0.7

If the tumor is small then DA is possible 0.7

If the tumor is red then DA is possible 0.7

If the tumor is blue then DA is possible 0.7

If the tumor is large and red then DA is possible 0.7

If the tumor is large and blue then DA is possible 0.7

If the tumor is small and blue then DA is possible 0.7

If the tumor is large then DB is possible 0.8

If the tumor is small then DB is possible 0.6

If the tumor is red then DB is possible 0.8

If the tumor is blue then DB is possible 0.7

If the tumor is large and red then DB is possible 0.8

If the tumor is large and blue then DB is possible 0.7

If the tumor is small and blue then D B is possible 0.6

Now we are ready to extract the certain and possible rules. In the next section we look at

how this is done.

4.3 Extracting Rules

The method used for extracting rules differ for the certain and possible

rules. We wlll look at each case individually. First we look at how to extract certain

rules. To extract certain rules:

1) All rules with unique degrees of belief are kept.
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2) In case two or more rules have the same degree of belief then the one with the

smaller number of attributes are kept.

Applying these rules to the above stated certain rules we get the following extracted

certain rules.

If the tumor is large then DA is present is 0.5

If the tumor is red then DB is present is 0.5

If the tumor is large and red then DB is present is 0.6

If the tumor is small and blue then DB is present is 0.5

Now we see how to extract possible rules. The steps are as follows:

1) All rules with unique degrees of belief are kept.

2) In case two or more rules have the same degree of belief then the one with the

larger number of attributes are kept.

Applying these rules to the possible rules shown above we get the following extracted

possible rules:

If the tumor is large and red then DA is possible 0.7

If the tumor is large and blue then DA is possible 0.7

If the tumor is small and blue then DA is possible 0.7

If the tumor is large and red then DB is possible 0.8

If the tumor is large and blue then DB is possible 0.7

If the tumor is small and blue then D B is possible 0.6
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4.4 Measuring Defln/bility

Now we turn our attention to defining the fuzzy terms involved in the

diagnosis as a function of the terms used in the symptoms. How well we are able to do

this, is a function of how much the decision follows the conditions. The concepts

explained here are from [21. Let {Bi} be a finite family of fuzzy sets which does not

necessarily form a partition of the universal set. Let A be a fuzzy set. Then we can

define the lower approximation of A through {Bi} as

L_A) = UI(BiCA)Bi.
i

In cases where I(BiCA} is less than some threshold _ it is advantageous to throw away

all the sets BI. In this case we have

R(A) a = UI(Bi cA) Bi.

Similarly we show an upper approximation of A through {Bi}

R (A) = UJ (Bi # A) Bi
i

and

m

R (A)a = UJ(Bi # A) Bi

Returning to our initial example and applying these concepts: ffwe choose uto be .5 and

BI=I_ B2=LrhR; B3=I_B; B4=Sr_Bthenwehave

R (DA) .5 = .5 L U .5(SOB)

Thus we can use a combination of Large and Small and Blue can be used to describe the

set of patients that are certainly sick through the symptoms L,S,R,B. Similarly, ff we

pick a to be .6 then we get

R (DA).6 = .TL u .7s u .7R u .7B
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